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Some Experiments on Idiolectal Differences among Speakers 

1 Motivation 
It is generally recognized that human listeners can distinguish 
between speakers who are famili ar to them far better than those 
who are unfamili ar.  This increased abilit y is due no doubt to 
speaker idiosyncrasies that are recognized by the listener, either 
consciously or unconsciously.  These speaker characteristics offer 
the possibilit y to significantly improve automatic speaker 
recognition performance, if only we were able to identify and use 
them. 

Historically in speaker recognition technology R&D, effort has 
been devoted to characterizing the statistics of a speaker’s 
amplitude spectrum.  And while this has included dynamic (e.g., 
difference spectra) as well as static information, the focus has been 
on spectral rather than temporal characterization.  “Famili ar-
speaker” differences, however, surely relate to longer term speech 
patterns, such as the usage of certain words and phrases, and to the 
features tied to these patterns, such as intonation, stress and timing.  
The use of such patterns and features affords a promising but 
radical departure from mainstream speaker recognition technology. 

To explore the possibilit y of using longer-term speech 
characteristics to characterize speakers, some preliminary 
experiments were performed using the SwitchBoard corpus.  These 
experiments were performed in order to begin to understand and to 
calibrate some idiolectal differences among speakers.  If such 
differences exist, then presumably they would exist within the 
context of speech patterns specific to the speakers.  Therefore this 
study was directed toward the statistics of word sequences as a 
function of speaker.  

2 Speaker-Dependent Language Models 
N-gram language models are often used to good effect to improve 
speech recognition performance.  These models are general models 
of the language, trained on very large corpora, typically including 
different sources from numerous speakers.  And while advanced 
speech recognition systems usually include algorithms to adapt to 
different speakers, adaptation is directed largely towards acoustic 
(spectral) features. 

It is possible to train language models for a specific speaker, of 
course, assuming suff icient data.  The question is whether such 
language models are useful in distinguishing among speakers.  
Some preliminary experiments were conducted to explore this 
question using the SwitchBoard corpus.1  These experiments were 
conducted to explore idiolectal differences and to comprehend the 
speaker characterizing potential of N-gram language models. 

                                                                 

1 The SwitchBoard corpus contains data from five hundred speakers 
collected from telephone conversations of nominally five minutes 
duration.  The average number of conversations per speaker was 
eleven, and each of the conversations for a given speaker was 
typically on a different topic. More details may be found on the 
Linguistic Data Consortium’s (LDC’s) web site: 
http://www.ldc.upenn.edu/readme_files/SwitchBoard.readme.html 

3 SwitchBoard Experiments 
A number of experiments were conducted using the SwitchBoard 
corpus.  All of these experiments used manual transcriptions of the 
speech signal as the input data.  No use was made of the acoustic 
speech signal, per se (except as the source for the manual 
transcription, of course).  The manual transcriptions were further 
processed to eliminate punctuation and transcriber comments and to 
add begin/end turn tags (pseudo-words).  An example utterance is: 

<start> Like uh [lipsmack] my boyfriend 
listens to Guns and Roses <end> 

Several variations of this representation might be to exclude non-
lexical sounds, to ignore case, and to ignore turn boundaries.  These 
simpli fications reduce the size of the N-gram vocabulary but also 
reduce the richness of the representation. 

3.1 Speaker Entropy 

The first experiment was to compute the speaker entropy of 
individual N-grams.  For the purpose of this study, the speaker 
entropy of an N-gram was defined as: 
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where ( )iNgram SpkrP  is simply the fraction of N-gram tokens in the 

entire SwitchBoard corpus that were spoken by speaker i: 
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Figure 1 is a scatter plot of speaker entropy for bigrams, where 
entropy is plotted versus the total number of bigrams in the corpus.  
For infrequently occurring bigrams the low-entropy word patterns 
(i.e., those that are highly indicative of the speaker) include a 
number of speaker-specific content words.  For example:   
“ in Maryland” , “South Dakota” and “Rhode Island” . For more 
frequently occurring bigrams the (relatively) low-entropy word 
patterns contain a number of back-channel words.  For example:  
“uh-huh uh-huh” , “<start> Right” and “Oh <end>” .  There are 
also a number of common speech patterns that show speaker 
specificity and that might thus be thought of as idiolectal.  For 
example:  “ in terms of” , “sort of” , “ it were” “ so forth” and  
“you bet” .  One bigram was particularly interesting in that it 
occurred a total of 25 times in the SwitchBoard corpus and yet had 
a speaker entropy of zero, meaning that it occurred only for a single 
speaker.  This is the bigram “how shall” .  On further inspection 
this bigram was found to be part of a larger phrase, namely  
“how shall I say …” , which occurred in half of the 26 
conversations for this speaker.  It is idiosyncratic speech patterns 
like this that we might wish to exploit in recognizing famili ar 
speakers. 
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Figure 1  Speaker entropy of bigrams for the SwitchBoard 
corpus 

3.2 Speaker Detection 

Speaker detection experiments were conducted using a whole 
conversation side as the test segment.  For each test, one true 
speaker conversation side was selected for the true speaker trial and 
one or more impostor conversation sides were selected for the 
impostor trials. 

3.2.1 Decision Algorithms 

A conventional log likelihood ratio test was used.  Thus the test 
segment score was defined to be the log of the ratio of true speaker 
li kelihood to background speaker li kelihood for an N-gram token j, 
averaged over all N-gram tokens in the conversation-side: 
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This formula is expressed in terms of N-gram tokens, but for 
eff iciency the log likelihood ratio is actually computed only once 
for each N-gram type, k: 
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where Ntokens(k) is the number of occurrences of N-gram type k in 
the test segment. 

The N-gram likelihoods for this test were then estimated from the 
remaining conversations in the SwitchBoard corpus.  Thus the 
target speaker model was created from all the conversation sides for 
the target speaker except the one under test, and the background 
speaker model was created from all the conversation sides in the 
whole SwitchBoard corpus except those for the target speaker and 
the selected impostor speakers.1 

For most of the speaker detection experiments discussed here, 
target speakers were limited to those having at least 10 
conversations, meaning that each target speaker model contains 

                                                                 

1 These estimated N-gram likelihoods were smoothed by adding 
0.001 to each likelihood estimate. 

data from at least 9 sessions.2  It should be noted here that in the 
SwitchBoard corpus each conversation was targeted to a specific 
topic, and that the SwitchBoard system controlled the topic 
selection so that no speaker (hardly) ever spoke on the same topic 
more than once.3 

Figure 2 is a plot of the detection error trade-off (“DET”) curve for 
unigrams and bigrams.  Note that there is significant speaker 
characterizing information for both unigrams and bigrams, with 
bigrams providing the best performance. 

Figure 2  Speaker detection performance on conversation sides 
for unigram and bigram likelihood ratio scores 

Considering the statistical correlation between recurrences of the 
same N-gram, the score formula was modified to discount multiple 
occurrences of the same N-gram in a test segment: 
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where D is the discount factor, with permissible values of D 
between 0 and 1. 

For D = 0 there is no discounting of N-gram tokens, and for D = 1 
there is complete discounting.  (With complete discounting, a 
particular N-gram type will contribute the same increment to the 
score regardless of how many times that N-gram occurs during the 
test segment.)   

Figure 3 is a DET plot that compares speaker detection 
performance with and without discounting of N-gram tokens.  Note 

                                                                 

2 This reduced the total number of target speakers to 217. 

3 The fact that speakers discussed a different topic during each 
conversation is significant because this implies that the speaker 
detection performance is not attributable to the topic.  On the 
contrary, the speaker detection performance is despite changes in 
the topic.  (Only four percent of the speakers ever spoke on the 
same topic more than once, and well under one half percent of all 
conversations were on a repeated topic for a speaker.) 
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that discounting degrades performance for unigrams but improves 
performance for bigrams.  Figure 4 shows DET performance for 
several values of discounting for bigrams.  Note that the best 
performance for bigrams is obtained with complete discounting.  
Therefore, complete discounting will be used for the remainder of 
the experiments discussed in this paper. 

Figure 3  Speaker detection performance for unigrams and 
bigrams with and without token discounting 

Figure 4  Speaker detection performance for bigrams as a 
function of token discounting 

3.2.2 Reduced N-gram Representations 

The N-grams, taken from the original SwitchBoard transcriptions, 
preserve information beyond that provided by basic SNOR-style 
transcriptions.  Specifically, SwitchBoard transcripts also provide 
upper/lower case information, non-word sounds (specifically 
sounds described by bracket-enclosed keys such as “ [ laughter]” 
and “ [ lipsmack]” ), and turn start/end tags.  Figure 5 shows the 

effect on speaker recognition performance of eliminating these 
components. 

Figure 5  Speaker detection performance for N-grams with 
reduced representation 

For both bigrams and unigrams, there is no change in performance 
from excluding non-words.  Beyond this, however, the effect is 
quite different for unigrams and bigrams.  For unigrams, 
eliminating case information degrades performance significantly.  
And additional elimination of non-word information degrades 
performance further (curiously, since there is no degradation in 
performance when non-words alone are eliminated).  For bigrams, 
there seems to be no effect on performance, regardless of the 
presence or absence of case and non-word information.  This might 
be due to an abilit y of bigrams to (redundantly) represent the 
information conveyed by case.  Finally, the effect of eliminating 
turn information is opposite for unigrams and bigrams.  For 
unigrams, the elimination of turn information (represented by single 
“<start>” / “<end>” tokens) gives the best performance, while for 
bigrams elimination of turn information gives the worst 
performance. 

3.2.3 Performance versus Amount of Test Data 

It would be interesting to understand how performance varies with 
the amount of test data.  To assess this aspect of performance, a 
scatterplot of bigram test scores is shown in figure 6, where each 
test score is plotted versus the number of bigram tokens in the test 
segment.  Overlaid on this scatterplot are plots of the mean values 
and standard deviations of test scores for subsets of scores divided 
according to number of bigram tokens.  Perhaps more relevant is 
the derivative F-ratio measure, which shows a sharp rise with the 
size of the test segment.  Note also that there is no suggestion that 
the F-ratio might be approaching an asymptote, up to the limits 
imposed by the SwitchBoard corpus. 
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Figure 6  Scatterplot of speaker detection scores for bigrams as a 
function of the number of bigram tokens in the test segment. 

3.2.4 Performance versus Number of Training Sessions 

It seems surprising that a speaker-dependent N-gram language 
model, trained on a rather small number of short conversations, 
could provide the level of speaker detection performance that has 
been observed.  Certainly this supports the notion of idiolect – 
speaker-specific usage of words and phrases.  Nevertheless, it 
would seem that a significant amount of training data would be 
required to adequately calibrate idiolect for speaker recognition. 

To gain some understanding of how performance varies as a 
function of the amount of training data, the target models were 
partitioned into different subsets according to how many 
conversation sides were used in creating the target model.  Results 
are shown in  Figure 7 for bigrams.  While there exists a modest 
level of speaker detection performance for even a single training 
session, performance climbs steadily up to the limit imposed by the 
SwitchBoard corpus, with each doubling of training data resulting 
in approximately a halving of error rate. 

 Figure 7  Speaker detection performance as a function of the 
number of training sessions for bigram models. 

3.2.5 Performance of Low- and High-frequency Bigrams 

To gain some understanding of the source of the speaker 
characterizing power, two experiments were run to progressively 
prune away first the low-frequency bigrams and second the high-
frequency bigrams.  This pruning was according to the total number 
of bigrams occurrences for the entire SwitchBoard corpus.  Figure 8 
is a DET plot showing the effect of excluding the low-count 
bigrams, and figure 9 is a DET plot showing the effect of excluding 
the high-count bigrams. 

Figure 8  Speaker detection performance excluding low 
frequency bigrams 

Note that there is littl e effect of excluding low-count bigrams up 
to a count of 150.  This is encouraging, because there are only 
2500 bigram types with a count 150 or more, which account for 
half of all bigram tokens.  (A cumulative distribution of unigram 
and bigram types and tokens for the SwitchBoard corpus, versus 
frequency of occurrence, is given in figure 10.) 

Figure 9  Speaker detection performance excluding high 
frequency bigrams 
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For high-count bigrams, there is littl e effect down to a count of 
1000.  This accounts for fewer than 300 bigram types, but over one 
quarter of all bigram tokens.  So, it appears that most of the 
idiolectal action, at least with respect to the use of bigrams for 
speaker recognition, is in the third most likely quartile of bigrams. 

 
Figure 10  Cumulative distribution of N-gram types and tokens 

3.2.6 Demographic Factors that Affect Performance 

There is a clear distinction in the acoustics between male and 
female speakers, which is not present in the transcription of course.  
There may, nonetheless, be consistent idiolectal differences 
between men and women that are exhibited in the speaker detection 
task.  This is aff irmed in the contrast between same-sex and cross-
sex speaker detection performance shown in the DET plots in figure 
11.  Curiously, there seems to be littl e or no difference between 
same-sex and cross-sex performance for female models, while the 
difference is a striking factor of 4 for male models. 

Figure 11  Comparison of speaker detection performance for 
same-sex versus cross-sex impostors 

Another factor of perhaps only academic interest is the significance 
of age difference between impostor and target.  To assess this, a 
scatterplot of impostor score versus age difference is presented in 
figure 12.  While there is no apparent trend visibly obvious in the 
scatterplot itself, a second order polynomial regression line shows 
that impostor scores do tend to become worse as the age difference 

between impostor and target increases.  Several speculative 
explanations for this phenomenon are possible.  For example, there 
may be stage-of-li fe factors that influence a speaker’s idiolect.  Or 
this may be a side effect of the evolution of language.  Or this effect 
may be a mere statistical anomaly. 

Figure 12  Scatterplot of impostor scores versus age difference 

4 Conclusions and Recommendations 
The performance of speaker detection based upon bigram statistics 
is surprisingly good, at least for the SwitchBoard corpus as studied.  
Surprising from several aspects, not just that speaker detection error 
rates are low: 

• Although performance was observed to continue to improve as 
the amount of training data was increased, nonetheless good 
performance was observed for a surprisingly small number of 
training conversations. 

• Performance was maintained while excluding all but a small 
number of bigrams, on the order of a few thousand.  These 
bigrams are namely those that occur most frequently.  (This 
helps to explain why it is that good performance is achieved 
with a relatively small amount of training data.) 

These experiments are very encouraging.  They suggest that it may 
be feasible to exploit “ famili ar speaker” characteristics with a 
reasonable amount of training.  They also suggest that it might be 
reasonable to create a technology that (automatically) finds the 
needed higher-level speech patterns (because they occur with 
suff icient frequency to exhibit multiple occurrences in the training 
data). 

Further exploration of these ideas seems likely to produce 
technology of great value for speaker recognition applications and 
certainly of great scientific merit.  One of the most promising areas 
would seem to be in exploiting the synergy between a speaker’s 
language and acoustic characteristics.  This can be done by more 
than simply combining language and acoustic scores.  Rather, it 
may well be far more discriminative to condition the acoustic 
calibration of a speaker on those speech patterns specific to that 
speaker’s idiolect. 


